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a b s t r a c t

In this study (Part II), the empirical formulation of corrosion model of a ship’s ballast tank was developed
to predict nonlinear time-dependent corrosion wastage based on the advanced data processing tech-
nique proposed by Part I. The detail on how to propose generalised mathematical formulation of
corrosion model was precisely documented in the previous paper (Part I). The statistical scatter of
corrosion data at any exposure time was investigated by the refined method and formulated based on a
2-parameter Weibull distribution which selected the best fit PDF. Throughout the nine (9) steps,
empirical formulation of the ship’s seawater ballast tank was successfully proposed and four (4) key step
results were also obtained. The proposed method in Part I was verified and confirmed by this application
of seawater ballast tank, thus making it possible to predict accurate behaviours of nonlinear time-
dependent corrosion. Developed procedures and obtained corrosion damage model for ship’s seawater
ballast tank can be used for development of engineering software.

© 2020 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In general, the design life of infrastructures such as onshore,
nearshore, offshore, and marine structures is considered as an
important factor for both owner (¼client) and builder
(¼constructor). In the case of marine structure, especially ship
structure, the lifecycle starts with the conclusion of a contract
including insurance matter, steel cutting, construction, operation,
maintenance including regular and irregular inspection, repair by
re-docking, and ends with the decommissioning (or demolition)
process. All the processes should be made with proper decision-
making. The ship-building market can be categorised by 1) the
new-buildingmarket, freight market, sale and purchase (or second-
hand) market, and decommissioning market. In general, this mar-
ket is owned by ship owners based on the world cargo volume and
market conditions including long and short economic-business
.
val Architects of Korea.
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cycles which are closely affecting the shipping cost and value of
ship for the consideration of new-building, choice of used ship, and
decision of decommissioning (Kim, 2010).

Over the last few decades, the investment of ship market has
rapidly expanded tomeet the high demand of the quantity of goods
transported. In this regard, a number of efforts were made to
extend the ship’s economic life (¼operation life or design life). In
the early 21st century, Goal Based Standards (GBS) for new ship
construction, which were proposed to enhance the functional
requirement and ensure the safety goal during the design life of the
ship, have been discussed and related regulations have been
approved by IMO (2010). These regulations will be applied to tanker
and bulk carrier with above 150m length ships starting construc-
tion from 1st July 2016. The specified design life of ship to deter-
mine the environmental condition and corrosive environment is
defined as a principal design parameter. For example, 25 years of
specific design life by considering Northsea environmental condi-
tion is applicable for oil tanker and bulk carrier specified in Tier II:
functional requirement by the International Maritime Organisation
(IMO, 2015) and the detail may be referred to in Fig. 1. It can be
summarised that the GBS was proposed to construct safe and
sevier B.V. This is an open access article under the CC BY-NC-ND license (http://
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Fig. 1. Structure of goal-based standards by the international maritime organisation (IMO, 2015).

D.K. Kim et al. / International Journal of Naval Architecture and Ocean Engineering 12 (2020) 645e656646
environmentally friendly structures by considering the intact and
specified damage conditions throughout their life.

Among others, one of the important factors causing the degra-
dation of ships and offshore structures is corrosion damage
together with other issues such as fatigue cracking and localised
dent. In general, this corrosion damage shows nonlinear behaviour
with time which brings difficulties to predict the accurate amount
of time-dependent corrosion wastage. A number of studies on the
development of time-dependent corrosion wastage model to pre-
dict nonlinear behaviour of corrosion growth have been widely
conducted by several researchers in two different ways using
physical and plausible empirical models.

In the case of plausible physical model, Melchers and his
research group (Melchers, 2001; Paik and Melchers, 2008) inves-
tigated and derived the basis of the physical corrosion progress.
They have successfully developed their own corrosion model
including a wide range of fundamental knowledge (Melchers,
2003a; b; 2012, Melchers et al., 2016; Petersen and Melchers,
2016). Chernov and his research team also studied physical corro-
sion models (Chernov 1990; Chernov and Ponomarenko, 1991).
With regards to the empirical model, it is required to adopt prob-
abilistic techniques with obtained corrosion wastage measure-
ments. Guedes Soares and his research group proposed several
corrosion damagemodels for ships and offshore structures (Guedes
Soares and Garbatov, 1998; Guedes Soares et al., 2005, Guedes
Soares et al., 2008; Garbatov et al., 2007; Garbatov and Guedes
Soares, 2008, 2017; Kim et al., 2017). Paik and his group also
widely investigated corrosion phenomenon and proposed several
time-dependent corrosion wastage models such as oil tanker and
FPSO (Paik et al., 2003), bulk carrier (Paik et al., 2003) and ballast
tank (Paik et al., 2004) by adopting probabilistic approaches. In
addition, Yamamoto and Ikegami (1998) investigated on corrosion
wastage in the different components of ships.

Recently, Paik and Kim (2012) proposed an advanced technique
to predict corrosionwastage by considering the formulation of sub-
parameter of probability density function as a function of time
applied to offshore well tube (Mohd Hairil and Paik, 2013) and
subsea gas pipeline (MohdHairil et al., 2014). Recently, probabilistic
data processing technique is proposed and applied in predicting
current profile (Kim et al., 2019). In addition, refined regression
analysis technique or artificial neural network (ANN) based data
processing technique is also highlithed (Kim et al., 2019; Wong and
Kim, 2018). A refined technique was most recently proposed
together with the final outcome as a shape of empirical formulation
(Kim et al., 2020). In the present study, a time-dependent corrosion
wastage model for a ship’s seawater ballast tank was developed by
adopting the refined technique proposed in Part I (Kim et al., 2020).
A number of application studies related to the structural safety
assessment of corroded structures have widely been conducted
based on existing time-dependent corrosion wastage models (Bai
et al., 2016; Kim et al., 2012a, 2012b, 2014; Mohd Hairil et al.,
2014; Rajput et al., 2019; Yang et al., 2016), corrosion margin
based industrial corrosion practices (Kim et al., 2012, 2014, 2015;
Paik et al., 2009), pitting corrosion (Rahbar-Ranji et al., 2015;
Wang et al., 2018, 2020a, 2020b) and many others (Cui et al.,
2019; Ozguc, 2020; Ringsberg et al., 2018). The proposed tech-
nique and corrosion model by the present study may help in pre-
dicting accurate residual strength of corroded structures.

2. Development of empirical formulation of time-dependent
corrosion model of seawater ballast tank

From the previous study (Part I), the flowchart shown below in
Fig. 2 has been proposed to formulate a generalised time-
dependent corrosion wastage model. Based on the obtained pro-
cedure, a time-dependent corrosion wastage model of seawater
ballast tank of aged ship was proposed with a total of 1935 corro-
sion measurements for ships aged 11e27 years (Paik et al., 2004).

2.1. Collection of corrosion data at various times (Step 1)

In the case of corrosion data, a total of 1,935 corrosion mea-
surements of seawater ballast tank from the aged ships were used
as shown in Fig. 3(a). However, details of the corrosion year



Fig. 2. Procedure to develop the time-dependent corrosion model by Part I (Kim et al., 2020).
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Fig. 3. Collected pitting corrosion damage depth versus age of seawater ballast tank.

D.K. Kim et al. / International Journal of Naval Architecture and Ocean Engineering 12 (2020) 645e656648
information were not provided from the previous study and only
limited information of corrosion data was shared as illustrated in
Table 1. Originally, corrosion measurements were opened based on
the half-year (0.5 year) time interval and it was merged by the one-
year (1 year) time interval in the present study as presented in
Table 1 which was re-plotted in Fig. 3(b).
2.2. Validation of data type (Step 2)

Once corrosion data was collected in Step I, validation of data
type was performed. If the detailed corrosion measurements could
be achieved, they can then be considered as “General time data
set”; however, the collected corrosion data of seawater ballast tank
in the present study shown in Table 1 should be considered as
“Specific time data set” with the one (1) year time interval.
2.3. Selection of the best interval (Step 3)

For the selection of the best interval, several methods have been
introduced in Part I and all of those methods can be utilised if the
corrosion data type was the general time data set. In the case of the
present study, specific time data set of corrosion data was adopted
so that this step can be skipped. One (1) year time interval was
selected as the best interval from Table 1.
Table 1
Collected pitting corrosion data at various times (Paik et al., 2004).

Age (or exposure time)
(Te, unit ¼ years)

Pit depth or reduction of plate thickness (Dc,

0.0e0.5 0.5e10 1.0e1.5

11e12 20 5 0
12e13 29 5 9
13e14 25 28 30
14e15 4 5 0
15e16 31 14 10
16e17 17 8 5
17e18 103 2 2
18e19 35 26 39
19e20 137 20 12
20e21 179 62 22
21e22 114 116 28
22e23 52 57 5
23e24 75 49 12
24e25 59 42 10
25e26 40 50 49
26e27 8 15 2
2.4. Goodness of fit test of corrosion data at each year (Step 4)

In the present study, the Anderson-Darling (A-D) test method
was adopted for the goodness of fit test of the collected corrosion
data based on probabilistic assessment. The A-D test result of each
year was summarised in Table 2. From the previous step, one (1)
year interval was selected as the best interval which as presented in
Table 2. From the next step (Step 5), a detailed process to propose
time-dependent corrosion wastage model of seawater ballast tank
was documented with four (4) key steps.

2.5. Selection of the best-fit probability density function by
statistical analysis (Step 5)

As highlighted in Part I, the lowest value obtained by the A-D
test represented the best fit distribution. In Table 2, the best-fit
distribution of each year was highlighted in bold. For example,
5.974 of Weibull distribution and 6.229 of Exponential distribution
were selected as the best-fit probability density function (PDF) for
11e12 year and 12e13 year time range, respectively. In addition, the
average value of each distributionwas presented in the last column
in Table 2 that showed Weibull distribution was finally selected as
the best fit PDF with an average A-D value of 12.311.

2.5.1. - Individual outcome (Key step I)
Individual outcome was produced based on the selected
unit ¼ mm)

1.5-2.0 2.0e2.5 2.5-3.0 3.0e3.5 3.5-4.0

0 0 0 0 0
0 0 0 0 0
2 0 0 0 0
0 0 0 0 0
3 2 0 0 0
2 1 1 0 0
4 0 0 0 0
9 4 3 0 0
8 9 2 0 1
13 17 2 0 0
26 7 6 0 0
12 7 5 3 0
5 3 5 0 0
2 0 0 0 0
59 40 2 2 3
0 0 0 0 0
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individual best fit distributions. For example, Table 3 shows the
summarised best fit PDF types which were shortlisted from Table 2
by adopting the A-D test.

It was then possible to produce individual outcome (Key step I)
based on selected individual best fit PDFs as illustrated in Table 3.
Fig. 4 represents the plotting result based on Table 3. As expected,
corrosion data of each year produced individually different types of
probability density functions. Based on the obtained individual
outcome, the blending processes such as Key step II to IV needed to
be performed.

2.5.2. - Overall outcome (Key step II)
In the previous Key step I, individual outcome was achieved and

2-parameterWeibull distribution (hereinWeibull PDF) consisted of
scale and shape parameters was selected as the best fit PDF as
shown in Eq. (1).

Selected best fit PDF: Weibull distribution

PDFðGeneralÞ ¼ f ðxÞ¼ B
A

�x
A

�B�1
$exp

�
�
�x
A

�B�
: (1)

where, A ¼ scale parameter, and B ¼ shape parameter.
Based on the achievement from Key step I, selected Weibull PDF

was to be commonly applied to all year’s corrosion data as shown in
Table 4. It was highlighted that this step of converting individual
outcome to overall outcome should be one of the important parts to
maintain the accuracy of the expected corrosion model. The next
step (Key step III) was closely related to the expression of corrosion
behaviour by a simplified formulation.

Based on the selected best-fit PDF, overall outcomes for all year
were plotted in Fig. 5. From the obtained overall outcome, we can
simply see the individual probabilistic trend of corrosion data by
one (1) PDF as shown in Eq. (1). However, it did not show the
general trend of all corrosion data. In this regard, the empirical
formulation of sub-parameter by time of PDF will be investigated in
the next section.

2.6. Formulation of sub-parameter of probability density function
as a function of time (Step 6)

Once best fit PDF was commonly applied to each time of the
corrosion data set, it might be able to bring the possibility for the
formulation of the sub-parameters as a function of time, meaning
that sub-parameters can now be blended as the simple function
shapes as shown in Fig. 6. It is observed in Fig. 6(b) that the ten-
dency of the gradient changes after 20 years of ship age which will
affect BðteÞ. As would be expected that the operation life of the
vessel designed by pre-CSR (common structural rule) was
20 years at that time. Mohd Hairil and Paik (2013) also conduct
similar study in predicting time-dependent corrosion wastage of
subsea oil well tube. They could obseve the tendency of the
gradient changes after 15 years and conclude that the corrosion rate
of the structure tends to speed up once it reaches 16 years of age. In
addition, we cautiously predict that as corrosion sensing technol-
ogy advances, corrosion information measured over 30 years can
each have its own error.

2.6.1. - Optimised outcome (Key step III)
From the data processing in the previous important steps, the

probability behaviour of corrosion wastage by time can be
expressed by a simple equation from Eq. (1) and Fig. 5, herein
“Optimised outcome”, as shown in Eq. (2).

PDFðpresent studyÞ ¼ f
�
Dc

�



Table 3
Details on individual outcome.

Age (¼ exposure time, yrs) Information of selected best fit probability density distribution (PDF)

A-D value Type of PDF Sub-parameters

A B C

11e12 5.974 Weibull 0.3987 1.9217 e

12e13 6.229 Exponential 0.5174 e e

13e14 5.536 SEV* 0.3957 e 1.0155
14e15 1.462 Logistic 0.1599 e 0.5401
15e16 5.032 Exponential 0.6750 e e

16e17 2.499 Exponential 0.7353 e e

17e18 34.762 Weibull 0.3705 1.4028 e

18e19 5.122 Logistic 0.3513 e 0.9125
19e20 29.836 Exponential 0.5701 e e

20e21 31.178 Exponential 0.6280 e e

21e22 17.936 Weibull 0.8515 1.4201 e

22e23 8.681 Weibull 0.9417 1.2701 e

23e24 12.304 Weibull 0.7303 1.2827 e

24e25 11.627 SEV* 0.4346 e 0.7471
25e26 6.099 Normal 0.7494 e 1.3276
26e27 2.817 SEV* 0.2936 e 0.7773
Average 11.693 Weibull N/A

Note: A, B, C for Weibull PDF are scale, shape and location parameter, in respectively. Details may be referred to Appendix A, Te ¼ age or exposure time,
SEV* ¼ Smallest Extreme Value.

Fig. 4. The obtained individual outcome (Key step I).

Table 4
Details on overall outcome.

Age (¼ exposure time, yrs) Information of selected best fit probability
density distribution (PDF)

A-D value Type of PDF Sub-parameters

A B C

11e12 5.974 Weibull 0.3987 1.9217 e

12e13 6.984 Weibull 0.5739 1.3935 e

13e14 6.880 Weibull 0.9064 1.9650 e

14e15 1.737 Weibull 0.5988 2.3498 e

15e16 5.110 Weibull 0.7420 1.3474 e

16e17 2.580 Weibull 0.7972 1.2595 e

17e18 34.762 Weibull 0.3705 1.4028 e

18e19 5.951 Weibull 1.0584 1.5785 e

19e20 31.489 Weibull 0.5966 1.1043 e

20e21 33.259 Weibull 0.6745 1.2024 e

21e22 17.936 Weibull 0.8515 1.4201 e

22e23 8.681 Weibull 0.9417 1.2701 e

23e24 12.304 Weibull 0.7303 1.2827 e

24e25 11.934 Weibull 0.6210 1.6414 e

25e26 8.055 Weibull 1.4894 1.8038 e

26e27 3.337 Weibull 0.7122 2.3221 e

Note: A, B, C forWeibull PDF are scale, shape and location parameter, in respectively.
Details may be referred to Appendix A. In the case of C, it represents location
parameter which is applicable only for 3-parameter Weibull PDF.
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¼ BðteÞ
AðteÞ

�
Dc

AðteÞ
�BðteÞ�1

$ exp

"
�
�

Dc

AðteÞ
�BðteÞ

#
(2)

where, PDF ¼ probability density function, Dc ¼ corrosion depth,
AðteÞ ¼ scale parameter by exposure time ¼ 0:0004t3e � 0:0248t2e þ
0:4796te � 2:3831, and BðteÞ ¼ shape parameter by exposure
time ¼ 0:0020t3e � 0:0995t2e þ 1:5618te � 6:0115, te ¼ exposure
time.

Asmentioned in Part I (Kim et al., 2020), sub-parameters such as
AðteÞ and BðteÞ were formulated as a function of time by the curve
fitting method shown in Fig. 6. Therefore, the optimised outcome
was then obtained as shown in Fig. 7. As expected, the obtained
outcome of “optimised outcome” was much more blended as
compared with “overall outcome”. In order to get accurate
“optimised outcome”, it should be highlighted again that the step of
empirical formulation by curve fitting in Fig. 6 should have higher
R2 value, meaning that the obtained curves needed to bewell-fitted
with the original data.

2.7. Formulation of TDCWMs (Step 7)

Once the sub-parameters were defined, we can then develop
two types of time-dependent corrosionwastagemodels (TDCWMs)
such as 1) Mean & Standard Deviation based model and 2) Cu-
mulative density function basedmodel. Harmonisation process will
be discussed in the coming section.

2.7.1. Model I: Mean & Standard Deviation based model (step 7a)
From the optimised outcome as shown in Eq. (2), mean and

standard deviation values of Weibull distribution were obtained as



Fig. 5. The obtained overall outcome (Key step II).

D.K. Kim et al. / International Journal of Naval Architecture and Ocean Engineering 12 (2020) 645e656 651
shown in Eqs. (3.1) and (3.2).

M ¼ A
�
te

�
,G

�
1þ 1

BðteÞ
�

(3.1)

SD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½AðteÞ�2,

�
G

�
1þ 2

BðteÞ
�
� G2

�
1þ 1

BðteÞ
��s

(3.2)

where,M ¼mean, SD¼ standard deviation, AðteÞ ¼ scale parameter
by exposure time ¼ 0:0004t3e � 0:0248t2e þ 0:4793te � 2:3812, and
BðteÞ ¼ shape parameter by exposure time ¼ 0:002t3e � 0:0994t2e þ
1:5604te � 6:0025.

Therefore, mean and standard deviation based model (Model I)
can be proposed as shown in Eq. (4) based on five (5) different
corrosion levels such as slight level (M - SD), average level (M),
severe level I (Mþ SD), severe level II (Mþ 2SD), and severe level III
(M þ 3SD) as proposed in Part I.
)
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Fig. 6. Empirical formulation of sub-parameter of probability
2.7.2. Model II: cumulative density function based model (step 7b)
As noted in Part I, the above-mentioned corrosionmodel (Model

I) for ship’s seawater ballast tank consisted of Gamma function
which may cause the inability to obtain the corrosion depth by
direct hand calculation, meaning that another corrosion model
(herein, Model II) based on cumulative density function (CDF)
needed to be developed. In order to derive a CDF based corrosion
model (Model II) shown in Eq. (5.1), it can be started from the
integration of PDF as illustrated in Eq. (2). Once we integrated PDF
by corrosion depth (Dc), CDF can be obtained as shown in Eq. (5.2).

Proposed Corrosion Model (Model I)

Dc ¼

8>>>><
>>>>:

M � SD for Slight level
M for Average level
M þ SD for Severe level I
M þ 2SD for Severe level II
M þ 3SD for Severe level III

(4)

where, Dc ¼ corrosion depth, M ¼ mean value in Eq. (3.1),
SD ¼ standard deviation in Eq. (3.2).

Cumulative Density Function (CDF) of Weibull distribution

CDFðGeneralÞ ¼ FðxÞ ¼
ð
PDF dx ¼

ð
f ðxÞ dx ¼ 1� exp

�
�
�x
A

�B �
(5.1)

CDFðpresent studyÞ ¼ FðDcÞ ¼
ð
PDF dDc ¼

ð
f ðDcÞ dDc

¼ 1� exp

"
�
�

Dc

AðteÞ
�BðteÞ

#
(5.2)

From the obtained relationship between CDF and corrosion
depth (Dc) in Eq. (5.2), Cumulative Density Function (CDF) based
model can be summarised as Eq. (5.3).

Proposed Corrosion Model (Model II)

Dc ¼AðteÞ$½ � lnð1� CDFÞ�C 1
BðteÞD (5.3)

where, Dc ¼ corrosion depth; A(te) ¼ scale parameter by exposure
time; B(te) ¼ shape parameter by exposure time.

As shown in Eq. (5.3), the proposed corrosion model II is the
function of sub-parameters, i.e., AðteÞ and BðteÞ, and CDF value. In
the case of sub-parameters, those were defined as the shape of
empirical formulation in Fig. 5. The effect of CDF value was inves-
tigated in Fig. 7. In general, 95% or above the value of probability
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density function as a function of time by curve fitting.



Fig. 7. The optimised outcome (Key step III).

Harmonisation between model I and II
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Fig. 9. Relationship between CDF and time.

Table 5
Sub-parameter of CDF.

CDFðteÞ¼u te3 þ x te2 þ j te þ z (7)

Severity u ( � 10-4) x( � 10-3) j( � 10-1) z( � 10-1)

Severe III 21.7722 �1.0952 17.0966 9.0793
Severe II 27.4138 �1.3763 21.5136 8.5260
Severe I �36.3164 1.8340 �28.7244 9.8292
Average �1.4169 7.1420 1.1187 11.1192
Slight 1.3653 �6.9445 1.0989 3.9257
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density was applied for the design of structures and can be
considered by 0.95 of CDF value in the present corrosion model.

For the research purpose, CDF values were increased at regular
intervals of 0.05 from0.05 to 0.95 as shown in Fig. 8. In addition, the
starting time of the corrosion which is one of the important out-
comes has been obtained by corrosion model as shown in Fig. 8. It
was found that the starting time of the corrosion was independent
from the CDF values whichmeant that only one (1) value of starting
of corrosion time can be achieved by Eq. (5.3). In this ballast tank
corrosion case, we can predict that it occurred after 7.585 years as
shown in Fig. 8 by the proposed Eqns. (3.2) and (5.3). This can be
done by extrapolation of AðteÞ and BðteÞ presented in Eq. (3.2).

However, some of the probability density functions (PDFs) with
different types of corrosion data were made sure to not be able to
predict the starting time of the corrosion as shown in a previous
example (Part I). In this case, it was suggested to adopt the 2nd or
3rd best PDF to predict the starting time of the corrosion. Based on
Fig. 8. Example of applied corrosion model with different CDF values.
the obtained corrosionmodel II, harmonisationwithModel I will be
processed. In corrosion model I, corrosion models have been clas-
sified by five (5) levels based on their severity such as slight,
average, and three severe levels. From the harmonisation process,
the CDF value in corrosionmodel II will be decided based on five (5)
corrosion levels.
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Fig. 10. The obtained harmonised outcomes for five corrosion levels (Key step IV).
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Fig. 11. Statistical analysis of obtained corrosion models.
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2.8. Harmonisation of formulated corrosion models (Step 8)

2.8.1. - Harmonised outcome (Key step IV)
In this step, two proposedmodels, i.e., model I and II obtained in

the previous section, will be compared to propose the harmonised
outcome. Basically, harmonisation process started from the
assumption that model I and II will produce similar results as
shown in Eq. (6). For the reader’s information, corrosion models I
and II are presented in Eqs. (4) and (5.3), respectively.

Model I x Model II (6)

From the previous step, sub-parameters of PDF were defined
and can be presented as a function of time. Here, we found that the
CDF value was also affected by time. In this regard, CDF values are
presented as function of time as shown in Fig. 9 and Eq. (7).where,
Table 6
Data of statistical analysis for harmonisation.

Age (Years) Slight Average Severe I

I II II/I I II II/I I

11e12 0.1926 0.1932 1.0029 0.4538 0.4533 0.9990 0.7149
12e13 0.2238 0.2255 1.0077 0.5174 0.5168 0.9989 0.8110
13e14 0.2415 0.2425 1.0045 0.5666 0.5665 0.9998 0.8917
14e15 0.2463 0.2451 0.9952 0.6039 0.6047 1.0014 0.9615
15e16 0.2395 0.2354 0.9829 0.6319 0.6337 1.0029 1.0243
16e17 0.2228 0.2168 0.9726 0.6535 0.6558 1.0035 1.0841
17e18 0.1987 0.1932 0.9724 0.6713 0.6730 1.0024 1.1440
18e19 0.1704 0.1692 0.9929 0.6877 0.6872 0.9993 1.2049
19e20 0.1435 0.1494 1.0409 0.7036 0.7001 0.9950 1.2637
20e21 0.1259 0.1378 1.0943 0.7187 0.7127 0.9917 1.3114
21e22 0.1271 0.1383 1.0886 0.7317 0.7261 0.9924 1.3362
22e23 0.1536 0.1552 1.0105 0.7430 0.7416 0.9981 1.3324
23e24 0.2057 0.1939 0.9426 0.7571 0.7614 1.0058 1.3084
24e25 0.2789 0.2605 0.9342 0.7812 0.7887 1.0096 1.2835
25e26 0.3686 0.3594 0.9750 0.8223 0.8268 1.0054 1.2760
26e27 0.4736 0.4914 1.0376 0.8850 0.8787 0.9929 1.2964
R2 N/A 0.9856 N/A 0.9988 N/A
Mean 1.0034 0.9999
COV 0.0431 0.0049

Note: I ¼ Model I, II ¼ Model II.
u x j, and z ¼ sub-parameter of CDF which can be referred to
Table 5.

From the assumption of Eq. (6), CDF values for five corrosion
levels such as slight, average, severe I, severe II, and severe III can be
achieved by investigation as shown in Fig. 10. In the harmonisation
process, it was suggested that at least 0.9 or above 0.9 of coefficient
of determination (R2) values should be achieved for the harmo-
nisation between Models I and II. In this study, 0.9856, 0.9856,
0.9996, 1.000, and 0.9982 of R2 values were obtained from slight to
severe III corrosion models as shown in Fig. 10.

In order to confirm the applicability of harmonised outcome,
statistical analysis was additionally conducted in Fig. 11. From the
mean and coefficient of variation (COV) values, it can be concluded
that those two models, Models I and II have been harmonised very
well and showed good agreement with each other. The details of
statistical analysis result can also be referred to in Table 6.

2.9. Generalisation of time-dependent corrosion model by
mathematical formulation (Step 9)

From the previous step 8, harmonisation between Models I and
II was conducted and verified by the Coefficient of determination
(R2), Mean and COV values as illustrated in Fig. 10. If the R2 value
was above 0.9, it can then go through the generalisation step for the
mathematical formulation of time-dependent corrosion model. If
the R2value did not satisfy the criterion (R2¼ 0.9), it can then go
back to Step 5 and the 2nd best PDF can be selected as the best-fit
PDF.

As mentioned earlier in the whole procedure shown in Fig. 2, to
develop a time-dependent corrosion wastage model, a total of four
(4) key steps were highlighted: individual, overall, optimised and
harmonised outcome and obtained outcomes as shown in
Fig. 12(a)e12(d). Each outcome has been re-plotted as a shape of
mean and standard deviation information together with the
measured corrosion data of the ship ballast tank which is presented
with a grey colour circle in Fig. 12. As would be expected, the mean
value of corrosion data was blended step by step and finally, a very
smooth curve shape of the corrosion model was obtained as shown
in key step IV in Fig. 12(d).

The obtained outcomes of the average level of corrosion model
by four (4) key steps were statically analysed again based on
Severe II Severe III

II II/I I II II/I I II II/I

0.7146 0.9995 0.9760 0.9764 1.0003 1.2372 1.2402 1.0024
0.8105 0.9994 1.1046 1.1046 1.0001 1.3981 1.4009 1.0020
0.8917 1.0000 1.2169 1.2169 1.0000 1.5420 1.5422 1.0001
0.9624 1.0009 1.3190 1.3194 1.0002 1.6766 1.6731 0.9979
1.0263 1.0019 1.4167 1.4176 1.0006 1.8091 1.8028 0.9965
1.0868 1.0024 1.5147 1.5164 1.0011 1.9454 1.9392 0.9969
1.1463 1.0020 1.6167 1.6190 1.0014 2.0893 2.0874 0.9991
1.2051 1.0002 1.7222 1.7245 1.0013 2.2395 2.2454 1.0026
1.2605 0.9975 1.8238 1.8250 1.0007 2.3839 2.3988 1.0063
1.3053 0.9953 1.9042 1.9042 1.0000 2.4969 2.5179 1.0084
1.3306 0.9958 1.9408 1.9409 1.0000 2.5454 2.5650 1.0077
1.3316 0.9994 1.9218 1.9237 1.0010 2.5112 2.5195 1.0033
1.3137 1.0040 1.8598 1.8632 1.0019 2.4111 2.4014 0.9960
1.2912 1.0060 1.7859 1.7884 1.0014 2.2882 2.2630 0.9890
1.2801 1.0032 1.7297 1.7299 1.0001 2.1834 2.1617 0.9901
1.2915 0.9962 1.7078 1.7080 1.0002 2.1192 2.1665 1.0223

0.9996 N/A 1.0000 N/A 0.9982
1.0002 1.0007 1.0013
0.0029 0.0006 0.0076



Fig. 12. The obtained key step results for ship ballast tank.
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individual outcome which was set on a horizontal axis and others
were put on a vertical axis in Fig.13. The details can be referred to in
Table 7. From the results in Fig. 13, individual and overall outcomes
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Fig. 13. Statistical analysis of the obtained average corrosion models.
showed that corrosion damage was fluctuating as time goes by. The
blended results were obtained once the optimisation step was
done. After that, harmonised outcome, which was close to opti-
mised outcome, can be obtained from the comparison between
corrosionModels I and II. Once again, the harmonised outcomewas
based on corrosionModel II and it can help engineers to predict the
accurate amount of corrosion damage in simple ways.

Finally, the generalised shape of corrosion model shown in Eq.
(8) can be proposed to predict time-dependent corrosion wastage
of the ship’s ballast tank with five different levels of corrosion such
as slight, average, severe I, II and III.

Time-dependent corrosion model of ship’s ballast tank

Dc ¼AðteÞ,½ � lnð1� CDFðteÞÞ�C
1

BðteÞD Eq. (8)

where, Dc ¼ time-dependent corrosion depth (mm), AðteÞ ¼ scale
parameter by exposure time ¼ 0:0004t3e � 0:0248t2e þ 0:4793te �
2:3812, BðteÞ ¼ shape parameter by exposure time ¼ 0:002t3e �
0:0994t2e þ 1:5604te � 6:0025, and CDFðteÞ ¼ cumulative density
function value which can be referred to in Eq. (7) and Fig. 9.
3. Concluding remarks

In the present study, the applicability of the proposedmethod to
predict time-dependent corrosion wastage by Part I (Kim et al.,
2020) was verified by corrosion data of a ship’s ballast tank. As
stated in the abstract part, three (3) objectives which are 1) starting
of corrosion time, 2) remaining of corrosion life (if there are criteria
of design life or minimum thickness requirement), and 3) corrosion



Table 7
Data of statistical analysis for key steps.

Age (Years) Average level of corrosion

Individual Overall Optimised Harmonised Individual
/Overall

Individual
/Optimised

Individual
/Harmonised

11e12 0.3536 0.3536 0.4538 0.4533 1.0000 1.2832 1.2819
12e13 0.5174 0.5234 0.5174 0.5168 1.0116 0.9999 0.9988
13e14 1.2438 0.8035 0.5666 0.5665 0.6460 0.4555 0.4554
14e15 0.5401 0.5306 0.6039 0.6047 0.9824 1.1180 1.1195
15e16 0.6750 0.6807 0.6319 0.6337 1.0084 0.9361 0.9388
16e17 0.7353 0.7412 0.6535 0.6558 1.0081 0.8887 0.8918
17e18 0.3376 0.3376 0.6713 0.6730 1.0000 1.9885 1.9933
18e19 0.9125 0.9501 0.6877 0.6872 1.0412 0.7536 0.7531
19e20 0.5701 0.5749 0.7036 0.7001 1.0085 1.2341 1.2279
20e21 0.6280 0.6342 0.7187 0.7127 1.0099 1.1444 1.1349
21e22 0.7744 0.7744 0.7317 0.7261 1.0000 0.9448 0.9376
22e23 0.8740 0.8740 0.7430 0.7416 1.0000 0.8502 0.8486
23e24 0.6764 0.6764 0.7571 0.7614 1.0000 1.1193 1.1258
24e25 0.9979 0.5555 0.7812 0.7887 0.5567 0.7828 0.7903
25e26 1.3276 1.3244 0.8223 0.8268 0.9976 0.6194 0.6228
26e27 0.9468 0.6310 0.8850 0.8787 0.6665 0.9347 0.9281
Mean 1.1112 1.1041 1.0030
Standard deviation (SD) 0.2487 0.3747 0.3314
Coefficient of variation (COV) 0.2238 0.3394 0.3304
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wastage over time, were covered and time-dependent corrosion
wastage could be predicted by the proposed corrosion model in the
present study.

The obtained outcomes from the present study can be sum-
marised as follows:

� The proposed method by Part I was verified by the corrosion
data of a ship’s ballast tank.

� Simple, accurate, and user friendly corrosion models for ship’s
ballast tank were developed which included five (5) corrosion
levels such as slight, average, severe I, II, and III.

� In the case of the ship’s ballast tank structure, the corrosion
behaviour can be predicted by a 2-parameter Weibull proba-
bility density function (PDF).

� It was found that the corrosion of the ship’s ballast tank
occurred after 7.5 years of operation.

The limitations of the proposed time-dependent corrosion
wastage model of the ship’s ballast tank are also summarised as
follows:

� As would be expected, the wrong data input will produce the
wrong output, meaning that corrosion data should be measured
accurately and new technologies on sensor should be focused
on.

� In this ship’s ballast wall corrosion model, it was recommended
to use an average corrosion model. If the readers want to use
other corrosion models such as slight, severe I, II, and III, it is
recommended to use the models until 21 years which is the
peak point of corrosion damage as shown in Fig. 10.

� For the development of corrosion model, some of the PDFs, i.e.,
normal, lognormal, 3-P lognormal, Gamma, 3-P Gamma, did not
provide corrosion models as presented (which may referred to
Table A2 provided by linin part I).

Finally, the advantages of a new technique to the proposed
method proposed in Part I were confirmed by the present example
study. However, it is recommended that further studies on different
types of structure with corrosion data should be conducted and
validated. The developed corrosion model for a ship’s ballast tank
will be very useful information to ship structural designers to
predict time-dependent corrosion wastage which can also directly
be used for wall thickness design. In addition, software develop-
ment work based on obtained outcome will be further performed
in the near future.
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